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Abstract—The growing number of mobile devices raised the 

volume of data in communication systems. To preserve the 

integrity of data error correction codes (ECC) are used, 

allowing the identification and correction of errors in the 

messages transferred or stored. A variety of algorithms for 

information decoding were studied in the last years. This paper 

describes a circuit design of two building blocks of a decoder 

based on information-set, previously proposed in the literature. 

The decoding algorithm used has a performance like maximum 

likelihood decoding (MLD), its implementation uses fewer 

hardware resources. The method comprises extracting the 

symbols considered being more reliable to construct a reduced 

set of candidates codewords, decreasing the number of 

comparisons to recover the message. The first block designed 

demodulates the received words and sorts the symbols based on 

its reliability, while the second block creates a matrix (Gnew), 

used to generate the candidate codewords. The circuit was first 

described in VHDL and implemented in a Virtex 5 FPGA, and 

then, its synthesis and layout were made in the 130 nm 

technology, using the IC design tools from Cadence. 

Keywords—Error correction codes, Decoder, Information-set, 

FPGA, VLSI. 

I. INTRODUCTION 

To some applications are imperative to ensure that the data 
is transmitted, received, and stored appropriately and 
integrity. However, channel effects can affect data integrity at 
some point, whether during storage or transmission [1]. In this 
scenario, it is common to use error-correcting codes (ECC). 
These codes were created to improve communication 
performance, correcting errors arising from events such as 
interference and noise. To recover the information, eventually 
corrupted, redundancy bits are inserted to the message during 
the coding process, allowing recovery in the decoding process, 
since the number of errors does not exceed the code correction 
limit [2-3].  

The ECC can be divided into two main categories: block 
codes and convolutional codes [3]. Traditionally, the block 
codes, covered in this work, are represented as C(n,k), where 
n is the number of bits of the codeword and k is the number of 
bits of the information (with 𝑛 − 𝑘 redundancy bits).  

 A representation of the ECC is shown in figure 1. In the 
message source, a message u is generated and then, it is 
encoded resulting in c. Subsequently, the codeword is 
transmitted through a noisy channel. The possibly corrupted 
version of c is named c*. Due to the redundancy bits, the 
message can be restored by the decoder using a specific 
algorithm, and, finally, u’ is delivered to the receiver.  
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Fig. 1. Communication Channel. 

The maximum likelihood method (MLD) is an optimum 
decoding algorithm. However, it is costly to the many 
necessary comparisons. Then, alternative algorithms, with 
performances comparable to MLD, have been extensively 
studied in the literature [3-11]. Some of these algorithms are 
based on information-set (IS) [4-11]. The most reliable 
symbols of the message are used to obtain an information-set 
and then generate a set of the most likely candidate 
codewords. The reduced set of candidates codewords allows 
fewer comparisons to obtain the correct codeword (recovered 
message) if compared to MLD (2k comparisons). According 
to [4], an information-set is any set of k linearly independent 
columns in the generator matrix G. 

This work presents the hardware implementation of some 
parts of the decoding algorithm proposed in [6], without stop 
criterion, targeting FPGA and ASIC. This paper is structured 
as follows. Section II presents a description of the alternative 
chosen algorithm. Section III describes the architecture of the 
building blocks from the decoder. Next, section IV presents 
the development and obtained results. Finally, section V 
presents the conclusion. 

II. DECODING ALGORITHM 

The algorithm presented in [6] uses the most reliable 
symbols of the received message to build partial matrices, to 
then generate a set of 𝑘 + 1 candidate codewords. It is wise to 
demonstrate the operation of the algorithm with the following 
example: Consider the code C(7,4) with the following 
generator matrix: 

                         𝑮 = |

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

| () 

 The message u = [1010] is encoded into a codeword c, that 
is given by multiply u by the G, resulting in c = [1010001]. 

Considering that codeword c is BPSK modulated and 
transmitted through a noisy channel, the received codeword, 
possibly corrupted, is called c*. The values of the received 
symbols are then quantified in 3 bits. The most reliable are the 
symbols with values 0 and 7, while the least reliable are the 
symbols with values 3 and 4. The symbols are classified 
according to his reliability (level 0 to 3), being 3 the most 
reliable and 0 the least reliable.  
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In this example, the codeword received is c* = [6, 1, 5, 3, 
0, 0, 7]. The first step of the algorithm is hard-decoding, thus 
r = [1010001]. A vector called rpartial is obtained selecting the 
k most reliable symbols of c*, therefore rpartial = [0100]. 

The next step is the construction of Gpartial, consisting of k 
columns of G. The select columns are 0, 4, 5, and 6, 
corresponding to those of the k most reliable symbols of c* in 
decreasing reliability order. Thus, Gpartial corresponds to the 
matrix: 

 𝑮𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =  |

1 1 1 0
0 0 1 0
0 1 1 0
0 1 0 1

| () 

After the construction of Gpartial, it is necessary to check if 
this matrix has an inverse matrix. If it does not have, another 
Gpartial matrix must be generated through another combination 
of the k most reliable columns of G. When the inverse matrix 
is obtained, it is possible to generate the Gnew matrix, through 
the product between G and the G-1partial:  

                         𝑮𝑛𝑒𝑤 = |

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 1 1 0 0 1

| () 

The first candidate codeword is obtained by the product of 
Gnew and rpartial, thus c0 = [1010001]. The others k candidate 
codewords are obtained by the product of Gnew and the rpartial 

(after bit-flipping of each symbol). The last step is to compare 
each candidate codeword with the received codeword (c*). 
The one with the shortest soft-distance is defined as the 
winning codeword, that is, the recovered message. In this 
example, the most similar codeword was c0. 

III. HARDWARE ARCHITECTURE 

To implement the hardware (FPGA and ASIC) of some 
parts of the algorithm proposed in [6], a hardware architecture 
for the decoder was proposed, based on another information-
set decoder presented in [7, 9].  

The hardware architecture of the decoder consists of four 
blocks, as presented in figure 2. The Block I receives the input 
(incoming message c*) and performs the hard-decoding 
(vector r) and reliability sorter of symbols (vector s). The 
Block II receives the outputs of Block I and selects a possible 
partial matrix Gpartial. The determinant of this matrix is 
checked, and the process is repeated until a valid Gpartial is 
obtained. Then, the inversion of Gpartial is performed by the 
modified Gauss Jordan elimination. The inverse matrix Ginv is 
then multiplied by G resulting in the matrix Gnew. The rpartial 
vector is also constructed in this block, based on the 
information-set positions. The Block III receives the rpartial and 
generates the 𝑘 + 1 candidate codewords. Block IV selects 
the best candidate codeword considering the soft-distance 
between each candidate codeword and the received message 
(c*).  

This work presents results for blocks I and II. Blocks III 
and IV are still in development, so far, only the FPGA 
implementation has been performed. 
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Fig. 2. Hardware Architecture. 

IV. DEVELOPMENT AND RESULTS 

A. FPGA design 

Block I perform the first steps of the algorithm. In this 
block, the hard-decision of the received codeword c* is 
performed. Another activity implemented is the sorting of the 
most reliable symbols. To sort the most reliable symbols in 
descending order, the classic sorting circuit based on the 
Insertion Sort algorithm was used [13]. The circuit is 
presented in figure 3, where d is the symbol to be sorted and s 
the sorted output. The s vector has two pieces of information 
the reliability level of each symbol and its respective position 
in the original input vector. The number of cycles required to 
sort the symbols is equal to the number of elements of the 
codeword c*.  

0

1

en

D0

Comp

d ≥ D0

0

1

en

D1

Comp

d ≥D1

0

1

en

D2

Comp

d ≥ D2

0

1

en

DN-1

Comp

d ≥ DN-1

s0(max) s1 s2 sN-1(min)

d

...

 

Fig. 3. Sort Insertion Method in Hardware. 

 The project was implemented using the Xilinx ISE design 
tool for a Virtex 5 FPGA. The resource usage of Block I for 
the C(7,4) code is presented in Table I (no DSP block or 
BRAM were used). 

TABLE I.  BLOCK I FPGA RESULTS 

Code LUTs Registers Fmax (MHz) Latency 

C(7,4) 40 55 336.86 7 cycles 

 The simulation results of Block I for the same code are 
shown in figure 4, whereas the input is c* = [7, 5, 4, 3, 2, 1, 
0]. The vector r represents the data obtained with the hard 
decision, while s represents the indexes of the ordered 
confidence vector. The output signal ready indicates when the 



vector s is completed ordered and, the block signal output is 
ready to be used by Block II. 

 

Fig. 4. Block I simulation result. 

 The Block II starts with the construction of the Gpartial, 
obtained by joining the k most reliable columns of the G, they 
correspond to the first k elements of the vector s. Then, Gpartial 
is verified to know if it is possible to get the inverse, k cycles 
are consumed to perform the Gpartial reduction. After the 
elimination process, the determinant is calculated, if the 
matrix is reversible (determinant equal ‘1’), Gauss Jordan 
elimination method is performed, otherwise, more k clock 
cycles must construct other Gpartial and check if it is reversible. 
The process to check if Gpartial is reversible has been 
subdivided into three steps: 

1)  Adjust the pivot. Check if the pivot Xi,j is valid (equal 

to ‘1’). If it is not, a row exchange is needed. 

2) Check if there are elements different from ‘0’ in the 

rows below and above the pivot. 

3) Perform the XOR operation between the pivot row and 

the rows identified in the second step. 
 To perform the next task, that is to obtain the inverted 
matrix, an improved algorithm of the Gauss Jordan 
elimination method was used [12]. Others k clock cycles are 
necessary to complete the inversion operation. The method 
generates an augmented matrix of order k × 2 · k, where the 
first k columns are the same columns of Gpartial, while the rest 
are the columns of an identity matrix of order k. All steps are 
presented below:  

1) Adjust the pivot. In this algorithm, the pivot will be 

always the X1,1 element. 

2) Check if there are elements different from ‘0’ in the 

rows below and above the pivot and perform the XOR 

operation between the pivot row and the rows identified in 

step 2. 

3) Perform the operation called shift left-up. Each 

element of the matrix must be moved one position to the left 

and one up.  
 Following the previously described tasks, the inverse of 
the matrix Gpartial is obtained and, finally, the Gnew is 
generated. The resource usage of Block II for C(7,4) code is 
presented in table II. No DSP block or BRAM were used.  

TABLE II.  BLOCK II FPGA RESULTS 

Code LUTs Registers Fmax 

(MHz) 

Latency 

C(7,4) 497 64 168.0 ≥ 8 cycles 

 The simulation results of Block II for the same code are 
presented in figure 5. The inputs consist of the hard-decision 
vector r and the indexes of the ordered confidence vector s = 
[6, 0, 5, 4, 1, 3, 2]. The output Gnew is obtained (for this vector 
s) after eight clock cycles, indicated by the signal output ready. 

 

Fig. 5. Block II simulation result. 

B. Logical and Physical Synthesis for BiCMOS 130 nm 

 The logical synthesis of Block I and II were performed for 
the C(7, 4)  code using the Genus tool from Cadence in the GF 
BiCMOS 8HP 130 nm technology. In Table III are presented 
the results about the area, power consumption, and the number 
of cells for each block. The netlist generated by Genus was 
simulated in ModelSim and compared with the FPGA 
simulation results.  

TABLE III.  LOGICAL SYNTHESIS RESULTS FOR BICMOS 130 NM 

Resources Block I Block II 

Number of Cells 187 698 

Area consumed (µm2) 3007 7143 

Block II 1.46 5.70 

 The physical synthesis of blocks I and II was performed 
for the C(7, 4) code using the Innovus tool from Cadence. 
Table IV shows the data on the use of resources to build the 
layout. The layout was verified throw geometry, connectivity, 
and DRC checks. The post-layout netlist generated was 
successfully simulated using the ModelSim tool. 

TABLE IV.  PHYSICAL SYNTHESIS RESULTS FOR BICMOS 130 NM 

Entity Dimensions 

(µm) 

Area 

(µm2) 

Fmax 

(MHz) 

Density 

(%) 

Block I 148 × 136 19,856 70 78.16 

Block II 152 × 182 28,756 50 92.0 

V. CONCLUSION 

This paper presented an FPGA and VLSI implementation 
of a part of a soft-decoding algorithm based on information-
set for block codes. To implement this algorithm, it was 
presented a hardware architecture consisting of four blocks. 
These blocks perform the hard-decision of the received 
message, extract the reliability of the symbols, create a matrix 
based on the most reliable symbols, generate a set of most 
likely candidate codewords and finally determine the best 
candidate. Results showed that the decoder was efficiently 
implemented in FPGA and ASIC, consuming a reduced 
number of logical resources. As future work, it is intended to 
finish blocks III and IV and join all blocks to obtain the 
complete decoder in FPGA and ASIC. Additionally, it is 
intended to synthesize the decoder for different codes sizes. 
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