
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

FPGA and VLSI Implementation of a Decoding

Based on Information-Set

Jefferson Rodrigo Schuertz1, Sibilla Batista da Luz França2

Dept. of Electrical Engineering

Federal University of Paraná

Curitiba, Brazil

jeffersonschuertz@ufpr.br1, sibilla@eletrica.ufpr.br2

Abstract—The growing number of mobile devices raised the

volume of data in communication systems. To preserve the

integrity of data error correction codes (ECC) are used,

allowing the identification and correction of errors in the

messages transferred or stored. A variety of algorithms for

information decoding were studied in the last years. This paper

describes a circuit design of two building blocks of a decoder

based on information-set, previously proposed in the literature.

The decoding algorithm used has a performance like maximum

likelihood decoding (MLD), its implementation uses fewer

hardware resources. The method comprises extracting the

symbols considered being more reliable to construct a reduced

set of candidates codewords, decreasing the number of

comparisons to recover the message. The first block designed

demodulates the received words and sorts the symbols based on

its reliability, while the second block creates a matrix (Gnew),

used to generate the candidate codewords. The circuit was first

described in VHDL and implemented in a Virtex 5 FPGA, and

then, its synthesis and layout were made in the 130 nm

technology, using the IC design tools from Cadence.

Keywords—Error correction codes, Decoder, Information-set,

FPGA, VLSI.

I. INTRODUCTION

To some applications are imperative to ensure that the data
is transmitted, received, and stored appropriately and
integrity. However, channel effects can affect data integrity at
some point, whether during storage or transmission [1]. In this
scenario, it is common to use error-correcting codes (ECC).
These codes were created to improve communication
performance, correcting errors arising from events such as
interference and noise. To recover the information, eventually
corrupted, redundancy bits are inserted to the message during
the coding process, allowing recovery in the decoding process,
since the number of errors does not exceed the code correction
limit [2-3].

The ECC can be divided into two main categories: block
codes and convolutional codes [3]. Traditionally, the block
codes, covered in this work, are represented as C(n,k), where
n is the number of bits of the codeword and k is the number of
bits of the information (with 𝑛 − 𝑘 redundancy bits).

 A representation of the ECC is shown in figure 1. In the
message source, a message u is generated and then, it is
encoded resulting in c. Subsequently, the codeword is
transmitted through a noisy channel. The possibly corrupted
version of c is named c*. Due to the redundancy bits, the
message can be restored by the decoder using a specific
algorithm, and, finally, u’ is delivered to the receiver.

Message
source u

Encoder Channel
c c*

noise

Decoder
u’

Receiver

Fig. 1. Communication Channel.

The maximum likelihood method (MLD) is an optimum
decoding algorithm. However, it is costly to the many
necessary comparisons. Then, alternative algorithms, with
performances comparable to MLD, have been extensively
studied in the literature [3-11]. Some of these algorithms are
based on information-set (IS) [4-11]. The most reliable
symbols of the message are used to obtain an information-set
and then generate a set of the most likely candidate
codewords. The reduced set of candidates codewords allows
fewer comparisons to obtain the correct codeword (recovered
message) if compared to MLD (2k comparisons). According
to [4], an information-set is any set of k linearly independent
columns in the generator matrix G.

This work presents the hardware implementation of some
parts of the decoding algorithm proposed in [6], without stop
criterion, targeting FPGA and ASIC. This paper is structured
as follows. Section II presents a description of the alternative
chosen algorithm. Section III describes the architecture of the
building blocks from the decoder. Next, section IV presents
the development and obtained results. Finally, section V
presents the conclusion.

II. DECODING ALGORITHM

The algorithm presented in [6] uses the most reliable
symbols of the received message to build partial matrices, to
then generate a set of 𝑘 + 1 candidate codewords. It is wise to
demonstrate the operation of the algorithm with the following
example: Consider the code C(7,4) with the following
generator matrix:

 𝑮 = |

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

| ()

 The message u = [1010] is encoded into a codeword c, that
is given by multiply u by the G, resulting in c = [1010001].

Considering that codeword c is BPSK modulated and
transmitted through a noisy channel, the received codeword,
possibly corrupted, is called c*. The values of the received
symbols are then quantified in 3 bits. The most reliable are the
symbols with values 0 and 7, while the least reliable are the
symbols with values 3 and 4. The symbols are classified
according to his reliability (level 0 to 3), being 3 the most
reliable and 0 the least reliable.

Alessandro Girardi

Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020

Alessandro Girardi

In this example, the codeword received is c* = [6, 1, 5, 3,
0, 0, 7]. The first step of the algorithm is hard-decoding, thus
r = [1010001]. A vector called rpartial is obtained selecting the
k most reliable symbols of c*, therefore rpartial = [0100].

The next step is the construction of Gpartial, consisting of k
columns of G. The select columns are 0, 4, 5, and 6,
corresponding to those of the k most reliable symbols of c* in
decreasing reliability order. Thus, Gpartial corresponds to the
matrix:

 𝑮𝑝𝑎𝑟𝑡𝑖𝑎𝑙 = |

1 1 1 0
0 0 1 0
0 1 1 0
0 1 0 1

| ()

After the construction of Gpartial, it is necessary to check if
this matrix has an inverse matrix. If it does not have, another
Gpartial matrix must be generated through another combination
of the k most reliable columns of G. When the inverse matrix
is obtained, it is possible to generate the Gnew matrix, through
the product between G and the G-1partial:

 𝑮𝑛𝑒𝑤 = |

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 1 1 0 0 1

| ()

The first candidate codeword is obtained by the product of
Gnew and rpartial, thus c0 = [1010001]. The others k candidate
codewords are obtained by the product of Gnew and the rpartial

(after bit-flipping of each symbol). The last step is to compare
each candidate codeword with the received codeword (c*).
The one with the shortest soft-distance is defined as the
winning codeword, that is, the recovered message. In this
example, the most similar codeword was c0.

III. HARDWARE ARCHITECTURE

To implement the hardware (FPGA and ASIC) of some
parts of the algorithm proposed in [6], a hardware architecture
for the decoder was proposed, based on another information-
set decoder presented in [7, 9].

The hardware architecture of the decoder consists of four
blocks, as presented in figure 2. The Block I receives the input
(incoming message c*) and performs the hard-decoding
(vector r) and reliability sorter of symbols (vector s). The
Block II receives the outputs of Block I and selects a possible
partial matrix Gpartial. The determinant of this matrix is
checked, and the process is repeated until a valid Gpartial is
obtained. Then, the inversion of Gpartial is performed by the
modified Gauss Jordan elimination. The inverse matrix Ginv is
then multiplied by G resulting in the matrix Gnew. The rpartial
vector is also constructed in this block, based on the
information-set positions. The Block III receives the rpartial and
generates the 𝑘 + 1 candidate codewords. Block IV selects
the best candidate codeword considering the soft-distance
between each candidate codeword and the received message
(c*).

This work presents results for blocks I and II. Blocks III
and IV are still in development, so far, only the FPGA
implementation has been performed.

Sorting

Hard-
decoding

Gpartial

determinant
check

Matrix
multiplication

r rpartial

construction

Matrix
multiplicationBit-flipping

patterns

Soft-distance
calculation

best candidate
selection

s

G
matrix

Gpartial

Gnew

Ginv

Matrix
invertion

IS_indexes

G

Block I

Block II

rpartial

soft_dist

Block III

Block IV

output

rpk-1 ... rp1

input (c*)

Fig. 2. Hardware Architecture.

IV. DEVELOPMENT AND RESULTS

A. FPGA design

Block I perform the first steps of the algorithm. In this
block, the hard-decision of the received codeword c* is
performed. Another activity implemented is the sorting of the
most reliable symbols. To sort the most reliable symbols in
descending order, the classic sorting circuit based on the
Insertion Sort algorithm was used [13]. The circuit is
presented in figure 3, where d is the symbol to be sorted and s
the sorted output. The s vector has two pieces of information
the reliability level of each symbol and its respective position
in the original input vector. The number of cycles required to
sort the symbols is equal to the number of elements of the
codeword c*.

0

1

en

D0

Comp

d ≥ D0

0

1

en

D1

Comp

d ≥D1

0

1

en

D2

Comp

d ≥ D2

0

1

en

DN-1

Comp

d ≥ DN-1

s0(max) s1 s2 sN-1(min)

d

...

Fig. 3. Sort Insertion Method in Hardware.

 The project was implemented using the Xilinx ISE design
tool for a Virtex 5 FPGA. The resource usage of Block I for
the C(7,4) code is presented in Table I (no DSP block or
BRAM were used).

TABLE I. BLOCK I FPGA RESULTS

Code LUTs Registers Fmax (MHz) Latency

C(7,4) 40 55 336.86 7 cycles

 The simulation results of Block I for the same code are
shown in figure 4, whereas the input is c* = [7, 5, 4, 3, 2, 1,
0]. The vector r represents the data obtained with the hard
decision, while s represents the indexes of the ordered
confidence vector. The output signal ready indicates when the

vector s is completed ordered and, the block signal output is
ready to be used by Block II.

Fig. 4. Block I simulation result.

 The Block II starts with the construction of the Gpartial,
obtained by joining the k most reliable columns of the G, they
correspond to the first k elements of the vector s. Then, Gpartial
is verified to know if it is possible to get the inverse, k cycles
are consumed to perform the Gpartial reduction. After the
elimination process, the determinant is calculated, if the
matrix is reversible (determinant equal ‘1’), Gauss Jordan
elimination method is performed, otherwise, more k clock
cycles must construct other Gpartial and check if it is reversible.
The process to check if Gpartial is reversible has been
subdivided into three steps:

1) Adjust the pivot. Check if the pivot Xi,j is valid (equal

to ‘1’). If it is not, a row exchange is needed.

2) Check if there are elements different from ‘0’ in the

rows below and above the pivot.

3) Perform the XOR operation between the pivot row and

the rows identified in the second step.
 To perform the next task, that is to obtain the inverted
matrix, an improved algorithm of the Gauss Jordan
elimination method was used [12]. Others k clock cycles are
necessary to complete the inversion operation. The method
generates an augmented matrix of order k × 2 · k, where the
first k columns are the same columns of Gpartial, while the rest
are the columns of an identity matrix of order k. All steps are
presented below:

1) Adjust the pivot. In this algorithm, the pivot will be

always the X1,1 element.

2) Check if there are elements different from ‘0’ in the

rows below and above the pivot and perform the XOR

operation between the pivot row and the rows identified in

step 2.

3) Perform the operation called shift left-up. Each

element of the matrix must be moved one position to the left

and one up.
 Following the previously described tasks, the inverse of
the matrix Gpartial is obtained and, finally, the Gnew is
generated. The resource usage of Block II for C(7,4) code is
presented in table II. No DSP block or BRAM were used.

TABLE II. BLOCK II FPGA RESULTS

Code LUTs Registers Fmax

(MHz)

Latency

C(7,4) 497 64 168.0 ≥ 8 cycles

 The simulation results of Block II for the same code are
presented in figure 5. The inputs consist of the hard-decision
vector r and the indexes of the ordered confidence vector s =
[6, 0, 5, 4, 1, 3, 2]. The output Gnew is obtained (for this vector
s) after eight clock cycles, indicated by the signal output ready.

Fig. 5. Block II simulation result.

B. Logical and Physical Synthesis for BiCMOS 130 nm

 The logical synthesis of Block I and II were performed for
the C(7, 4) code using the Genus tool from Cadence in the GF
BiCMOS 8HP 130 nm technology. In Table III are presented
the results about the area, power consumption, and the number
of cells for each block. The netlist generated by Genus was
simulated in ModelSim and compared with the FPGA
simulation results.

TABLE III. LOGICAL SYNTHESIS RESULTS FOR BICMOS 130 NM

Resources Block I Block II

Number of Cells 187 698

Area consumed (µm2) 3007 7143

Block II 1.46 5.70

 The physical synthesis of blocks I and II was performed
for the C(7, 4) code using the Innovus tool from Cadence.
Table IV shows the data on the use of resources to build the
layout. The layout was verified throw geometry, connectivity,
and DRC checks. The post-layout netlist generated was
successfully simulated using the ModelSim tool.

TABLE IV. PHYSICAL SYNTHESIS RESULTS FOR BICMOS 130 NM

Entity Dimensions

(µm)

Area

(µm2)

Fmax

(MHz)

Density

(%)

Block I 148 × 136 19,856 70 78.16

Block II 152 × 182 28,756 50 92.0

V. CONCLUSION

This paper presented an FPGA and VLSI implementation
of a part of a soft-decoding algorithm based on information-
set for block codes. To implement this algorithm, it was
presented a hardware architecture consisting of four blocks.
These blocks perform the hard-decision of the received
message, extract the reliability of the symbols, create a matrix
based on the most reliable symbols, generate a set of most
likely candidate codewords and finally determine the best
candidate. Results showed that the decoder was efficiently
implemented in FPGA and ASIC, consuming a reduced
number of logical resources. As future work, it is intended to
finish blocks III and IV and join all blocks to obtain the
complete decoder in FPGA and ASIC. Additionally, it is
intended to synthesize the decoder for different codes sizes.

REFERENCES

[1] B. Sklar, “Digital Communications. Fundamentals and Applications”,
2nd ed. Prentice Hall, 2017.

[2] S. Lin and D.J. Costello, “Error Control Coding: Fundamentals and
applications”, 2nd ed. Prentice Hall, June 2004.

[3] M. Fossorier, S. Lin, “Soft-decision decoding of linear block codes
based on order statistics” Transactions on Information Theory, Vol. IT
– 4I, No. 5, pp. 13791396, Sep. 1995.

[4] E. Prange, “The use of information sets in decoding cyclic codes” IEEE
Transactions on information Theory, Vol. IT-8, pp. 5-9, Sep. 1962.

[5] Dorsch, B. "A decoding algorithm for binary block codes and J-ary
output channels (Corresp.)," IEEE Transactions on Information
Theory, vol. 20, no. 3, pp. 391-394, May 1974, doi:
10.1109/TIT.1974.1055217. Trans, Vol. IT-20, No. 3, May 1974, pp.
391–4.

[6] Brante, G. G. de O, Godoy W, Muniz, D.; “Information Set Based Soft-
Decoding Algorithm for Block Codes”. IEEE Latin America
Transactions, Latin-American Conference on Communications,
Bogota, 2010.

[7] Gortan, A.; Godoy, W. Jr.; Jasinski, R. P.; Pedroni, V. A. “Achieving
Near-MLD Performance with Soft Information-Set Decoders
Implemented in FPGAs”. IEEE Asia Pacifc Conference on Circuits and
SystemsCircuits and Systems (APCCAS), Kuala Lumpur, 2010.

[8] Jasinski, R. P.; Godoy JR., W.; Gortan, A.; França, S. B. L. ; Pedroni,
V. A. . “Efficient Hardware Implementation of Advanced Soft
Information-Set Decoders in FPGAs”. WSEAS Transactions on
Communications, v. 12, p. 334-351, 2013.

[9] Scholl S. and N. Wehn, “Hardware implementation of a Reed-Solomon
soft decoder based on information set decoding”. Design Automation
and Test in Europe, December 2013.

[10] Karthik G.R. “Modified error insertion technique for information set
based decoders” Conference: Advances in Computing,
Communications and Informatics (ICACCI), 2013 International
Conference, July 2013.

[11] Versfeld J., Y. Genga, and O. Oyerinde. (2019). “Improved Iterative
Convergence Rate for Soft-Decision Bit-Level Reed-Solomon
Decoders using Information Set Decoding”. IEEE Wireless Africa
Conference (WAC), Pretoria, August 2019.

[12] Pedroni, V. A, Gortan A., Godoy W. Jr. “An Improved GF(2) Matrix
Inverter with Linear Time Complexity,” International Conference on
Reconfigurable Computing, 2010.

[13] Ribas, L; Castellis, D.; Carrabina, J. “A linear sorter core based on
programmable register file”. Conference on Design of Circuits and
Integrated Systems (DCIS’04), 2004.

